学术报告
Large scale business forecasting: a hierarchical approach
题目:Large scale business forecasting: a hierarchical approach
报告人:李丰副教授 (北京大学)
摘要:Hierarchical forecasting with noisy and intermittent time series is a challenge in both research and empirical studies. Extensive research focuses on improving the accuracy of each hierarchy. This talk focus on advancing forecasting methodologies for hierarchical and ultra-long time series. We will start with a hierarchical forecasting with alignment approach that treats bottom-level forecasts as mutable, improving overall accuracy, especially in intermittent time series, using N-BEATS and LightGBM. Then we develops a reconciliation method that maintains immutability for a subset of forecasts in hierarchical structures, ensuring coherence and accuracy while preserving operational constraints, demonstrated with online retail sales data. In the end, we introduce a distributed framework for ultra-long time series forecasting using MapReduce, which enhances accuracy and computational efficiency by splitting the series into subseries and applying ARIMA models, proving especially effective for long forecast horizons.
报告人简介:李丰博士就职于北京大学光华管理学院,任商务统计与经济计量系副教授。本科毕业于中国人民大学,博士毕业于瑞典斯德哥尔摩大学,研究领域包括贝叶斯统计学,大规模时间序列预测方法,大数据分布式学习等。李丰博士最新研究成果发表在统计期刊JCGS, 管理期刊EJOR (ABS4),会计期刊CAR (FT50) 等。他同时著有 Bayesian Modeling of Conditional Densities,《大数据分布式计算与案例》和《统计计算》。
报告时间:2024年10月31日(周四)上午10:30-12:30
报告地点:教二楼727
联系人:胡涛